
Grigory Adamovsky
Lewis Research Center
Cleveland, Ohio

Nathan Ida
The University of Akron
Akron, Ohio

Laser Beam Propagation Through
Inhomogeneous Media With Shock-Like
Profiles:  Modeling and Computing

NASA Technical Memorandum 113152

October 1997



The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counter-part of peer
reviewed formal professional papers, but
having less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that help round out the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, you can:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov/
STI-homepage.html

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301) 621-0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           800 Elkridge Landing Road
           Linthicum Heights, MD 21090-2934



Grigory Adamovsky
Lewis Research Center
Cleveland, Ohio

Nathan Ida
The University of Akron
Akron, Ohio

Laser Beam Propagation Through
Inhomogeneous Media With Shock-Like
Profiles:  Modeling and Computing

NASA Technical Memorandum 113152

October 1997

National Aeronautics and
Space Administration

Lewis Research Center

Prepared for
Optical Technology in Fluid, Thermal, and Combustion Flow III
sponsored by the Society of Photo-Optical and Instrumentation Engineers
San Diego, California, July 27—August 1, 1997



Available from

NASA Center for Aerospace Information
800 Elkridge Landing Road
Linthicum Heights, MD  21090-2934
Price Code: A03

National Technical Information Service
5287 Port Royal Road
Springfield, VA 22100

Price Code: A03



Laser beam propagation through inhomogeneous media with shock-like
profiles: modeling and computing

Grigory Adamovsky

National Aeronautics and Space Administration
Lewis Research Center

Brookpark Road, Cleveland, Ohio 44135

and

Nathan Ida
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Electrical Engineering Department

Akron, Ohio 44325

ABSTRACT

Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of
radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and
others.  In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows.
Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and
spreading.

The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media.
Numerical techniques are presented to compute the beam through such media.  The results of computation are presented,
discussed, and compared with experimental data.

1.  INTRODUCTION

Interest in a medium with a rapidly varying refractive index has been increasing recently partially due to the advent
of supersonic flight, a growing need for better flow visualization systems and a deeper understanding of light propagation
through shocks.  In that respect, attempts have been made to explain the refraction phenomenon1 and formation of refractive
fringes2  and to conduct mathematical and experimental analysis of light diffraction on and transmission through plane shock
waves3,4.  Such phenomena as light diffraction5  and scattering6,7   on shocks have been observed and reported.  Also,
experiments have been performed to determine a normal shock location.8,9  In view of this development in the experimental
field of shocks visualization and analysis a need has arisen for a deeper understanding of the phenomenon of light propagation
through a highly inhomogeneous medium.  Thus, theoretical and computational models to perform numerical analysis have
become important for explaining the recently observed  phenomena such as laser beam splitting and broadening.

The purpose of this paper is to present a computational model of a laser beam striking an inhomogeneous body under
a grazing incidence. The model includes the inhomogeneous body, the incident laser beam, and a computational scheme to
propagate the beam through the inhomogeneity under the grazing incidence.
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2.  DESCRIPTION OF THE MODEL

To evaluate the phenomenon of wave propagation through inhomogeneous media the following model has been
constructed.  The inhomogeneous media is assumed to be a penetrable circular cylinder with a cylindrically symmetric profile
of the refractive index.  The radial distribution of the refractive index profile has a shock-like profile.  Such a profile has been
described in the literature:10-13
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where
∆n n nhigh low= − ,

nhigh  and nlow  are the maximum and minimum values of the refractive index respectively,

R  is the radius of the inhomogeneous cylinder,

r x y= +2 2  is the radial coordinate,

x and y are Cartesian coordinates of the point of observation,
L  is the shock thickness.

Parameters ∆n , R , and L  describe the shock-like profile of the refractive index.  Figure 1 represents an
example of a 2-dimensional distribution of the refractive index with ∆n = 0 01. , R= 25 0λ , and L = λ 0 , where λ 0  is the

wavelength in vacuum.  In this work we assume that nlow = 1 and L = 0.  Thus, when L = 0, we have a homogeneous

cylinder with the index of refraction n n= +1 ∆  placed in another homogeneous  medium with the index of refraction equal
to 1.

The cylinder described above is placed in the Cartesian coordinate system with its long axis along the vertical Z axis.  It is
illuminated by an incident electromagnetic field with the propagation vector normal to the long axis of the cylinder.  The
electromagnetic field is a sheet of light with a constant intensity in the direction along the axis of the cylinder and the
Gaussian intensity profile in the direction normal to it.  We will call this sheet of light a laser beam.  The electic and magnetic
field vectors are chosen to form a transverse magnetic  (TM) wave. Assuming that the direction of propagation is the Y
direction, the intensity of the two dimensional incident field can be written as:14,15
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w0  is the Gaussian beam waist, and λ  is the wavelength of radiation in the medium with refractive index n. Thus

λ λ= 0 n  , where λ 0  is the wavelength of radiation in vacuum.  Coefficient A is a normalization constant.

The beam and the cylinder are positioned in such a way that the optical axis of the beam strikes the cylinder at
the grazing incidence at r R= .  Selection of the described above configuration permits  reduction of a three dimensional
problem of wave propagation to a two dimensional one.

Selection of a small diameter incident Gaussian beam striking a relatively large diameter scatterer gives an
opportunity to separate a scattered field from the incident one.  The idea has been implemented for curvature radii
measurements.16   In that experiment a laser beam impinging at a grazing incidence on a surface produced a diffraction edge
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wave.  A reduction of the laser beam diameter led to a separation of the edge wave from the incident beam.  In the region
where the two fields overlapped, diffraction fringes were observed.

 To compute propagation of the incident beam through the medium described a hybrid method has been selected.
The method consists of two parts, propagation through the inhomogeneity and projection of the emerged field into the far
field.   The first part of the problem, propagation of an electromagnetic field through an inhomogeneity,  is computed using
the finite-difference time domain (FD-TD) method.  The wavefront that emerges as result of calculations  then is propagated
to a remotely located screen using the Fresnel diffraction equation.

3.  FINITE-DIFFERENCE TIME-DOMAIN METHOD

3.1 Introduction

The FD-TD method of computing the electromagnetic wave propagation is based on a simultaneous solution of a
system of the first order partial differential equations derived from Maxwell’s time dependent curl equations.17-19

Furthermore, the electric and magnetic field components are positioned in a specific manner described by the Yee algorithm.20

The algorithm permits solving for both electric and magnetic fields in time and space rather than solving for the electric field
along with a wave equation.  Those electric and magnetic components are positioned in space in a specific interleaved way
which permits a natural satisfaction of tangential field continuity conditions at the interfaces.   Due to the fact that the process
of solving partial differential equations in an unbounded domain using discrete  techniques involves a truncation of the
solution domain, an approximated boundary is introduced at a finite distance from a scatterer.   This approximate boundary
condition is also called an absorption boundary condition (ABC).  The ABCs developed by Mur21 are specially designed to be
used with the FD-TD method.   Simultaneous discretization in space and time domains requires temporal stability.  The time
domain discretization scheme is stable if the ratio of spatial segmentation distance to the time step size satisfies the Courant
criterion.22   A straight forward application of a cubical Yee cell in Cartesian coordinates to curved  surfaces leads to stair-
case approximation.  The resultant stepped edge profile of the approximated surface generates an error. 23   One of the ways  to
minimize the problem is to make the cells small.

3.2    Numerical implementation

To compute wave propagation using the FD-TD method the scattered field formulation has been chosen.  It is based
on splitting the total field on the known incident and unknown scattered fields, performing the FD-TD computation of the
scattered field, and adding the incident field to it to obtain the total field.  For a 2D problem pertaining to the model described
in the previous section such formulation  in a case of TM wave leads to the following equations:
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The FD-TD discretization process applied to equations derived from scattered field formulation of TM wave
propagation gives the following:
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where coefficients associated with electric and magnetic fields are correspondingly C t
E = ⋅

∆
∆( )ε 0

 and C t
H = ⋅

∆
∆( )µ 0

,

and ∆ ∆ ∆= =x y .  For simplicity, notations for scattered fields in the equations above are omitted.  The absorption boundary

conditions used are the Mur’s conditions of the 2nd order for the edges of the computational domain and of the 1st order for the
corners.

3.3  Computational results

The computational domain is selected to be 60 wavelengths wide in X direction and 80 wavelengths long in the
direction of beam propagation, or Y direction. To minimize a negative effect of the stair case approximation the size of space
steps is chosen to be 0.1 of  the wavelength.  This resulted in a two dimensional grid with 600 x 800 grid points.  2000 time
steps are used to achieve a steady state of the computed field.  The time step is selected according to the Courant criterion to
be equal to 0.99 of the Courant number ∆tc . The Courant number for a two-dimensional problem is derived from the Courant

stability criterion :

∆
∆
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c

=
⋅

= ⋅
2 2

0

0 0ε µ
,       (10)

where
∆ ∆ ∆= =x y  is the distance between the grid points,

c0 0 0
1= ε µ  is the speed light in vacuum,

ε 0  and µ 0  are permittivity and permeability of vacuum respectively.

A two dimensional Gaussian beam having the wavelength λ µ0 1=  and the waist radius w0 010= λ  enters the

computational domain located at a distance y0 0200= λ  from the waist.  The cylinder and  the Gaussian beam are positioned

in the computational domain as presented in Figure 2.  The propagation of the beam is in the Y direction in a such way that its
directional axis passes through the middle of the computational domain.  A cylindrical shape body with the refractive index
different from the one of the surrounding medium is placed in the passage of the beam the way described in the previous
sections.

Figure 3 shows propagation of the Gaussian beam through a medium which contains a cylinder with the radius
R = 30 0λ  and the maximum refractive index difference between the cylinder and the surrounding medium ∆n = 0 005. .
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Splitting of the incident Gaussian beam and formation of a double peak and fringes are clearly seen on the picture.  The
phenomena are caused by a combination of effects.  The most significant are the interference between the incident Gaussian
beam and the diffracted edge wave and scattering by a dielectric cylinder.

Computed effects of the radius of the cylinder and its refractive index on the wave propagation are presented in
Figures 4 through 7.  The first two of them, Figures 4 and 5, represent three-dimensional views of Gaussian beams propagated
through cylinders similar to the one used to obtain data shown in Figure 3 but for ∆n = 0 002.  and ∆n = 0 008.  respectively.
Calculated intensity distributions at the exit from the computational domain for ∆n  = 0.002, 0.005, and 0.008 are presented
in Figure 6.   Figure 7 shows the effect of a change in the radius R of the cylinder with ∆n = 0 005. .

Thus, the calculations have shown that the cylinder radius R and refractive index difference ∆n  have a significant
effect on the relative amplitude of the two main peaks in the intensity distribution.  It can be seen from the figures that an
increase in any of these parameters leads to an increase in amplitudes of both peaks.  Moreover, in response to changes in
these parameters,  the amplitude of the peak to the right changes more rapidly than the one to the left.  Another  factor that
plays an important role in the intensity distribution is the relative position of the beam and the cylinder.

4.  FORMATION OF IMAGE IN THE FAR FIELD

One of the methods to propagate optical fields involves the Fresnel diffraction integral.  The integral facilitates
propagation of an optical disturbance from one plane with coordinates ξ  and η  to another one with coordinates x and y and

located at a distance z from the first.  Applying a conventional technique described by Weaver24  to a two dimensional
problem and maintaining the same coordinate notation as in the previous chapters, the following form of the Fresnel
diffraction equation can be derived:

ψ ψ ξ ξ ξ2 1 2
2( ) ( ) exp ( )x

Ke jky

y

jk

y
x d

l

= ⋅ ⋅ −�        (11)

where K is the inclination factor.

The last expression can be written in terms of the Fourier transform and then solved numerically.  Using the
established procedure the following  is obtained:
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where
Ψ1( )u  and Ψ2( )u  are the Fourier transforms of ψ 1( )x  and ψ 2( )x  respectively,

H u( )  is the free space transfer function of the system,  H u e
jky

e
j yu

( ) = ⋅ − πλ 2
.

Thus, the process of propagating an optical field from one location to another consists of three steps.  These steps are
computing the Fourier transform of the field in the original plane, multiplying it by the free space transfer function, and
performing the inverse Fourier transformation of the resultant expression in order to find the field at a new location.   To
perform the direct and inverse Fourier transformations a Fast Fourier Transform algorithm, based on the Danielson-Lanczos
Lemma, and computer codes are adopted from available literature on numerical techniques.25   Results of propagation are
presented in the following figures.  In the first series of figures the original field is computed using the FD-TD method and
then propagated to distances of 200λ  and 40 0λ .  Figure 8 shows the intensity distribution at a distance of 200λ  for cases

when the refractive index difference ∆n = 0 005.  and ∆n = 0 008. .  The radius of the cylinder R in both cases remain the
same, R = 30 0λ . When the distance increases the pattern goes through transformations.  The sharp changes in the computed

intensity distribution become smoother and eventually disappear.

A phenomenon of beam spreading can be observed by comparing the intensity distributions of an undisturbed or
reference Gaussian beam with the one that emerges after propagating through the cylinder.  The beam spreading manifests in
an increase of the spatial width of the curve that forms the intensity distribution.   In Figure 9 the beam spreading can be seen
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at the right side of the curve next to the reference Gaussian profile.  The cylinder used to compute the data has the following
parameters: R = 30 0λ and∆n = 0 008. .  This phenomenon has already been observed experimentally and published.9  Figures

10 to 11 show intensity distributions at a distance of 800λ  from the exit from the computational domain from FD-TD

computations with∆n = 0 005.  and ∆n = 0 008.  respectively. The beam splitting and broadening are present.  Fringes can also
be seen.  Increase in the refractive index and/or the radius of the cylinder will lead to enhancement of these phenomena.

5.  CONCLUSION

 A two-dimensional model and hybrid computational technique have been proposed in this paper to propagate a
Gaussian beam through inhomogeneities with shock-like profiles into the far field under a grazing incident condition.
Computing of the beam propagation through the computational domain is performed by the FD-TD method .  The shape of
inhomogeneity is selected to be cylindrical.  The resultant fields are then propagated into the far field using the Fresnel
diffraction equation and Fourier transformation.    The computed patterns show effects of  the refractive index and the radius
of  the cylinder.  The patterns of intensity distribution of a Gaussian beam in the far field show beam splitting and spreading.
These phenomena have been also observed experimentally.  An example of the experimentally obtained intensity profile of a
Gaussian beam after passing a bow shock is shown in Figure 12.  The experimental setup used was similar to the one
described in literature.6,7  To generate bow shock a cylindrical blunt body was inserted in the supersonic flow.  A laser beam
sent through the shock under the grazing angle of incidence was projected to a remotely located screen.  A CCD camera
captured the image of the beam on the screen and displayed the beam intensity profile on a computer screen. The beam
intensity profile clearly shows beam splitting and formation of fringes.  Thus, the model and computational method are
supported by experimental data.  Moreover, the phenomenon of beam spreading by a shock may be used as the basis for
shock detection.

An extension of the method proposed in this paper into the three-dimensional domain will be one of the first future
areas of effort.  Inhomogeneous bodies then will be spheres with shock-like profiles of the refractive index and large
diameters.   To build a three dimensional computational model with geometrical dimensions close to those that appear under
real conditions some shortcomings of the presented method have to be overcome.  One of the shortcomings comes from the
limitations of the FD-TD method.  Methods based a phase object approximations26,27 may help to eliminate those limitations.
One of the methods, anomalous diffraction approximation,28,29  is especially attractive when a  phase object has it refractive
index close to the one of the surrounding medium.    However, the method would have to be modified to include potential
refractive effects of the spheres.

Other areas that will deserve future attention  involve the large angle scattering and polarization phenomena.  In
order to increase the field of view and evaluate effects associated with large angle scatter, the inclination factor K has to be
closely evaluated.     The beam propagation into the far field using the Fresnel diffraction equation is based on a scalar field
formulation.  This means that polarization of the incident beam is not taken into account.  Development of a vector field
formulation and an associated computational technique represents a certain interest and challenge.
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Figure 1:  Example of 2D distribution of the refractive index
   with ∆n = 0 01. , R= 25 0λ , and L = λ 0 .

Computational

Domain

Gaussian
Beam

Cylinder

R

Y

X

Figure 2:  Top view of the computational domain with
                 relative orientation of the incident beam and
                 cylinder; grazing incidence.

Figure 3:  Results of computation of a Gaussian beam
                 propagation through inhomogeneous media with

R = 30 0λ and∆n = 0 005. ;  grazing incidence

Figure 4: Results of computation of a Gaussian beam
                propagation through inhomogeneous media with

R = 30 0λ and ∆n = 0 002. ; grazing incidence.
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Figure 5: Results of computation of a Gaussian beam
                propagation through inhomogeneous media with

R = 30 0λ ,and ∆n = 0 008. ; grazing incidence.

Figure 6:  Calculated intensity distribution at the exit from
                     the computational domain for ∆n = 0 002. ,
                     0.005, and 0.008; (R = 30 0λ ).

Figure 7:  Calculated intensity distributions at the exit from
                  the computational domain for ∆n = 0 005.  and
                  different radii R.

Figure 8:  Intensity distribution at 200λ  distance for cases

                 of the refractive index differences ∆n = 0 005.
   and∆n = 0 008. ; ( R = 30 0λ ).

NASA TM–113152                                                              9



Figure 9:  Beam spreading of a Gaussian beam at 200λ
                 distance by a dielectric cylinder (R = 30 0λ

  and∆n = 0 008. ) under  grazing incidence.

Figure 10:  Intensity distribution at 800λ  distance

    obtained using the FD-TD data and Fresnel
    diffraction equation; (R = 30 0λ , ∆n = 0 005. ).

Figure 11:  Intensity distribution at 800λ  distance

   obtained using the FD-TD data and Fresnel
   diffraction equation; (R = 30 0λ , ∆n = 0 008. ).

Figure 12:  Example of an experimentally obtained
    intensity profile of a Gaussian beam after
    passing through a bow shock.
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